Abstracto Discord Bot Documentation

Sheldan https://github.com/Sheldan/abstracto

Version 1.3.0, 2021/07/04 11:43

Table of Contents

1. Description
2. Glossary
3. General information
4. Features
4.1. Core
4.1.1. Emotes
4.1.2. Commands
4.2. Moderation
4.2.1. Post targets
4.2.2. Commands
4.3. Warning
4.3.1. Post targets
4.3.2. Feature modes
4.3.3. Commands
4.4. Automatic warn decay
4.4.1. Relevant system configuration
4.4.2. Post targets
4.4.3. Feature modes
4.4.4. Commands
4.5. Muting
4.5.1. Post targets
4.5.2. Feature modes
4.5.3. Commands
4.6. Logging
4.6.1. Post targets
4.7. User notes
4.7.1. Commands
4.8. Invite filter
4.8.1. Post targets
4.8.2. Feature modes
4.8.3. Commands
4.9. Profanity filter
4.9.1. Post targets
4.9.2. Feature modes
4.9.3. Emotes
4.9.4. Commands
4.10. Reporting a message via reaction
4.10.1. Relevant system configuration

N DN NN == =

10
10
10
11
11
11
11
12
12
12
12
12
13
13
13
13
14
14
14
15
15
15
15
16
16
16
17
17
17
17
18

4.10.2. Post targets
4.10.3. Emotes
4.11. Mod mail
4.11.1. Necessary bot permissions
4.11.2. Workflow
4.11.3. Relevant system configuration
4.11.4. Post targets
4.11.5. Feature modes
4.11.6. Emotes
4.11.7. Commands
4.12. Experience tracking
4.12.1. Necessary bot permissions
4.12.2. Relevant system configuration
4.12.3. Commands
4.13. Assignable roles
4.13.1. Commands
4.14. Statistic
4.15. Emote tracking
4.15.1. Feature modes
4.15.2. Commands
4.16. Reminders
4.16.1. Commands
4.17. Starboard
4.17.1. Emotes
4.17.2. Relevant system configuration
4.17.3. Post targets
4.17.4. Commands
4.18. Suggestions
4.18.1. Feature modes
4.18.2. Post targets
4.18.3. Emotes
4.18.4. Relevant system configuration
4.18.5. Commands
4.19. Miscellaneous
4.19.1. Commands
4.20. Link embeds
4.20.1. Emotes
4.21. Repost detection and tracking
4.21.1. Feature modes
4.21.2. Emotes
4.21.3. Commands

18
18
18
18
18
18
19
19
19
19
21
21
21
21
22
23
25
25
25
25
27
28
28
28
29
29
29
29
29
30
30
30
30
31
31
31
32
32
32
32
32

4.22. Entertainment commands
4.22.1. Relevant system configuration
4.23. Webservices
4.24. Youtube
4.24.1. Feature modes
4.24.2. Command
4.25. Urban dictionary
4.25.1. Command

33
33
34
34
35
35
35
35

1. Description

Abstracto is a feature rich Discord bot written in Java and uses JDA as the wrapper for the Discord
API. This documentation is split into two parts: Technical documentation and user documentation.

2. Glossary

Post target

Describes the channel where Abstracto will send specific messages to. For example, the
command ban sends a message containing information about the ban to the banlLog post target.
Post targets can be configured with the command posttarget and once defined can only be
switched to another channel. The bot needs MESSAGE_WRITE in the channel in order to send the
messages.

Decayed warnings

Warnings have a decayed property, which means it can be marked as inactive, while the
warning itself is not deleted.

3. General information

Duration input

This procedure is done when a command requires a duration as an input, for example mute. In
order to define a duration: use a positive number followed by one of the following time units: s,
m, h, d or w representing seconds, minutes, hours, days and weeks respectively. Weeks in this case
are just a short hand for 7 days.

Pagination navigation

If a pagination is used for the output of a command you can navigate the pages with 00 and 00 and
00 to close the pagination.

Role as parameter

Whenever a role is a parameter for a command, this can be done by either providing the role ID
or mentioning the role.

Channel groups

This concept enables you to group channels together into channel groups and enact certain
restrictions or features on this whole group.

System configuration

Some properties can be configured while the bot is running and can be changed for each guild
respectively. In the respective features they are noted under Relevant system configuration. In
order to change this you need to use the command setConfig with the provided key and the new
desired value.

Emotes

The features have section of the keys of used emotes in the feature, you can change this emote

with the setEmote command.

Feature Modes

Features can have different modes. This means, a feature behaves differently if the mode is
changed. For example: modmail has two modes: log and nolLog. In the mode 1og mod mail threads
will be logged into the post target modmaillog while in the noLog mode, this does not happen. This
consideration of the modes does depend on the implementation of the features.

4. Features

4.1. Core

The core feature contains necessary commands in order for Abstracto to function and be
configured.

4.1.1. Emotes

* successReaction reaction emote in case the command completed successfully

* warnReaction reaction emote in case the command did not complete successfully

4.1.2. Commands

Help

» Usage: help [module/command]

» Description: If no parameter is provided, this will list the currently available modules. If the
provided parameter matches the name of a module, information about that module is
displayed. This information includes a description and the available commands of this
module. If the provided parameter matches a command name, information about this
command is displayed. The module matching takes precedence over command matching.
This information includes the a short description, a more detailed description, aliases (if

any), parameters (if any), which roles are allowed to execute the command, or if it is not
restricted and which effects a command has.

Changing the system configuration

» Usage setConfig <key> <value>

» Description: Changes the value of this configuration identified by key to value. Some of these
configurations have separate commands, but this works in general.

» Example: setConfig expMin 15 to set the minimum experience to 15

Resetting the configuration to default values

» Usage resetConfig [key/feature]

» Description: Resets the configuration of the given key or for the complete feature identified
by feature. If this is not provided, it will reset the entire server to the default configuration.

Changing emotes Abstracto uses

» Usage: setEmote <key> <emote>

» Description: Sets the emote identified by key used by Abstracto on this server to emote. This
allows both built in emotes and custom emotes, but Abstracto must be in the server of the
custom emote in order to use them.

Clearing the cache

» Usage: clear(Cache

 Description: Clears the internal cache used by Abstracto. This mostly affects template
changes directly done in the database.

» Usage: ping

 Description: Prints the latency of Abstracto to the Discord servers.

» Usage: echo <text>

 Description: Echos text in the same channel this command as executed in.

Changing the prefix
» Usage: setPrefix <prefix>

 Description: Changes the prefix of the bot in this guild to prefix. This can be one or multiple
characters.

Changing a post target
» Usage: posttarget <key> <channel>
* Description: Changes the given post target identified by key to the given channel. All
messages using this post target will be send to this channel from now on. If neither key nor

channel is given, this will print the currently available post targets and the channels they
point to, if set.

» Example: posttarget banLog #general to log the bans in the #general channel.

Changing admin mode

» Usage: setAdminMode <true/false>

* Description: Changes the admin modes on this server to the given value. Admin mode means,
that all commands in the current server, can only be executed by members who have the
ADMINISTRATOR permission.

Listing the features

» Usage: features

» Description: Lists the available features and whether or not they are enabled in this server.

Enabling a feature

» Usage: enableFeature <key>

* Description: Enables the feature identified by key in this server. If the feature dependents on
other features, they will be enabled as well.

» Example: enableFeature moderation to enable the moderation feature

Disabling a feature

» Usage: disableFeature <key>

 Description: Disables the feature identified by key in this server. If the feature is required for
other features, they will be disabled as well.

» Example: disableFeature moderation to disable the moderation feature

Creating a channel group

» Usage: createChannelGroup <key>
» Description: Creates a new channel group identified by key.

* Aliases: +ChGroup

Adding a channel to a channel group

» Usage: addToChannelGroup <groupName> <channel>

* Description: Adds the channel to the channel group identified by the groupName. It is not
possible for a channel to be in a group twice.

 Aliases: addTChGrp, chGrpCh+

» Example: addToChannelGroup group1 #general to add the channel #general to the group group1

Removing a channel from a channel group
» Usage: removeFromChannelGroup <groupName> <channel>
» Description: Removes the channel from the channel group identified by groupName.
* Aliases: rmChChgrp, chGrpCh-
» Example: removeFromChannelGroup group1 #general to remove the channel #general from the

group group]

Deleting a channel group

» Usage: deleteChannelGroup <key>

* Description: Deletes the channel group identified by key. This will also remove all associated
channels from this group. This command fails, if the group is used in other features and
referenced.

* Aliases: -ChGroup

Disabling a command in a group

» Usage: disableCommand <commandName> <groupName>

» Description: Disables the command identified by commandName in the channel group groupName.
A command is considered disabled in a specified channel, if the command is disabled in all
the groups the channel is in.

» Example: disableCommand warn group1 to disable the command warn in the group group1

Enabling a command in a group

» Usage: enableCommand <commandName> <groupName>

* Description: Enables the command identified by commandName in the channel group groupName.
A command is considered enabled in a specified channel, if the command is enabled in any
the groups the channel is in.

» Example: enableCommand warn group1 to enable the command warn in the group group1

Showing all available channel groups and the respective channels

» Usage: listChannelGroups

* Description: Provides an overview of the currently available channel groups and which
channels are in this channel group.

» Aliases: 1sChGrp

Removing role restrictions from a command

» Usage: allow <featureName |commandName>

* Description: Allows everyone to execute all commands in this feature/the command. Which
means, any restrictions concerning which role is able to execute a certain command is
ignored even if it still shows in the help output.

Allowing a role to execute a command

» Usage: allowRole <featureName|commandName> <role>

* Description: Allows the provided role to execute all commands in the feature/the command.
This command automatically restricts the commands, which means, if it was unrestricted
before, after executing this command only the provided role can execute the command.

» Example: allowRole moderation @Staff to allow the role Staff to execute all commands in the

moderation feature (Where @Staff is a role mention)

Forbidding a role to execute a command

 Usage: disAllowRole <featureName|commandName> <role>

 Description: Removes the role from the list of allowed roles for all commands in the
feature/the command.

* Example: disAllowRole moderation @Staff to forbid the role Staff to execute all commands in

the moderation feature (where @Staff is a role mention)

Make a role affected by a command
» Usage: makeAffected <effect> <role>
 Description: Makes the role affected by the effect.
» Example: makeAffected ban @Staff in order so the role Staff can be banned (Where @Staff is

a role mention)

Make a role immune against a command

» Usage: makeImmune <effect> <role>

* Description: Makes the role immune to effect.

» Example: makeImmune ban @Staff in order so the role Staff cannot be banned (where @Staff is
a role mention)

Show all effects
» Usage: showEffects

* Description: Shows the currently possible effects and a short description of them.

Enforce the role restrictions of commands
» Usage: restrict <featureName|commandName>

* Description: Causes the role restrictions for a all commands in the feature/the command to be
in effect again.

Enabling a feature mode
* Usage: enableMode <featureName> <mode>
» Description: Enables the mode mode in feature featureName. If the enabled state of the feature

featureName is part of the default config, it will no longer be default config that after
executing enableMode.

Disabling a feature mode
» Usage: disableMode <featureName> <mode>
» Description: Disables the mode mode in feature featureName. If the enabled state of the feature

featureName is part of the default config, it will no longer be default config after executing
disableMode.

Listing all feature modes
» usage featureModes [feature]
 Description: Lists all of the currently available feature modes and the feature they are
associated with. If feature is given, it only lists the feature modes of this feature. The output

also includes whether or not the current mode is enabled and if this value comes from the
default configuration.

Setting up a feature with an interactive wizard
» Usage: setupFeature <featureName>
» Description: Starts an interactive wizard to configure the necessary properties and post

targets of a feature. Also includes custom steps. Closes with a summary page to see all
changes.

Allow the bot to use certain mentions

» Usage: allowMention <mentionType>

* Description: Allows the bot to use certain mentions. “mentionType " can either be everyone,
role or user. If @everyone is enabled, this also enables @here mentions. This change takes
immediate effect and is only for the current server. Per default user and role mentions are
enabled.

Disallow the bot to use certain mentions
» Usage: disallowMention <mentionType>
* Description: Disallows the bot to use certain mentions. “mentionType ™ can either be
everyone, role or user. If @everyone is disabled, this also disables @here mentions. This

change takes immediate effect and is only for the current server. Per default everyone/here
mentions are disabled.

Setting a custom template for this server
» Usage: setTemplate <templateKey>
* Description: Adds or updates the given template identified by templateKey only for the
current server. The content of the template needs to be attached to the message as a file and
is required to be a plaintext file. The file can be named anything. The template needs to be in

Freemarker format. This change is only in effect for this server and is called a 'customized
template'. This will take effect immediately.

Retrieving the current default template
» Usage: getTemplate <templateKey>

» Description: Loads the current global template identified by templateKey and returns the
content as an attached file to the response of the command.

Retrieving the current customized template for this server
» Usage: getCustomTemplate <templateKey>
 Description: Loads the current customized tempalte identified by templateKey and returns

the content as an attached file to the response of the command. Shows an error message, if
there exists no customized template for this server for the provided templateKey.

Resetting a customized template to the default template

» Usage resetTemplate <templateKey>

» Description: Resets the template identified by templateKey to the default content.

Show a link to documentation

» Usage documentation

 Description: Shows links to access the documentation.

Create a server specific alias
» Usage createAlias <commandName> <alias>
» Description: Creates the server specific alias for command commandName identified by alias.
This means that from now on, users can use the command identified by commandName by using
alias in its place, when executing the command or when using the help command. This alias

is only available in this server, and it is not allowed to use the names of existing commands
or pre-defined aliases. In case such an alias is used as alias, an error message is shown.

Delete a server specific alias

» Usage: deleteAlias <alias>

» Description: Deletes the server specific alias identified by alias. It is not possible to delete

https://freemarker.apache.org/

pre-defined aliases. If alias does not exist, an error message is shown.

Creating a profanity group

» Usage: createProfanityGroup <profanityGroupName>

» Description: Creates a profanity group with the given profanityGroupName. This name must be
unique within the server.

Adding a profanity regex to a profanity group
» Usage: addProfanityRegex <profanityGroupName> <profanityName> <regex> [replacement]
» Description: Adds a profanity regex identified by profanityName to the profanity group
identified by profanityGroupName. The regex to be used is in regex. Depending on how the

regex is used, you can define a replacement, with which a found text will be replaced. The
profanityName must be unique within the profanity group.

Show the current profanity configuration
» Usage: showProfanityConfig
» Description: Shows the current profanity configuration for the current server, including all

profanity groups and profanity regex.

Removing a profanity regex from a profanity group
» Usage: removeProfanityRegex <profanityGroupName> <profanityName>
* Description: Removes the profanity regex identified by profanityName from the profanity

group identified by profanityGroupName.

Deleting a profanity group
» Usage: deleteProfanityGroup <profanityGroupName>
» Description: Deletes the profanity group identified by profanityGroupName and all profanity

regexes within.

Showing the uptime of the bot
» Usage: uptime

» Shows the uptime and start time of the bot instance.

Adding a command to a channel group

» Usage: addCommandToChannelGroup <channelGroupName> <commandName>

 Description: Adds the command commandName to the channel group channelGroupName. This can
be used to add the command to a channel group which can disable the command or set a
cooldown on the command.

Disabling a channel group

» Usage: disableChannelGroup <channelGroupName>

» Description: Disables the effect the channel group channelGroupName has.

Enabling a channel group

» Usage: enableChannelGroup <channelGroupName>

* Description: Enables the effect the channel group channelGroupName has.

Removing a command from a channel group
* Usage: removeCommandFromChannelGroup <channelGroupName> <commandName>
* Description: Removes the command commandName from the channel group channelGroupName.

This can be used to remove the command from a channel group which can enable the
command or remove a cooldown on the command.

Clearing cooldowns
» Usage: clearCommandCoolDowns

* Description: Resets all currently active cooldowns of the current server, so every command
can be used again.

Setting channel and member cooldowns in a channel group

» Usage: commandCoolDownChannelGroup <channelGroupName> <channelDuration> <memberDuration>

» Description: Sets the cooldown of the commands of the channel group channelGroupName to
channelDuration for the channel group and memberDuration for each member.

Setting the global cooldown for a command

» Usage: commandCoolDownServer <command> <duration>

» Description: Sets the cooldown for command command to duration for the whole server.

What is a feature mode?

A feature mode is a very specific way in which a feature behaves for a certain decision. These
feature modes can be defined for each server and are directly bound to a feature. These feature
modes influence the availability of commands or general behavior of features.

An example of a feature mode is mod mail logging: If the feature mode log of mod mail is disabled,
no thread will be logged and the separate command closeNoLog will not be available in the first
place, because it will behave the same as the normal close command. If the feature mode is
enabled, the messages from the thread are logged in the respective post target and the command
will be available.

What is a profanity group?

A profanity group is just a container for various regexes. They are grouped together in order to be
identified together and kept organized. Each profanity regex within that group has another
identified. For example a regex group handles the word 'test’. Then a profanity regex is for all lower
cases, this regex can be named 'lower’, and the regex group is then named 'test'.

How do multiple cooldowns interact

If there are multiple cooldowns on a command active, the longest cooldown will decide the cool
down. A channel cannot be in multiple cool down channel groups and this is actively enforced by
the command. If a cooldown is active, an error message is shown with the duration after which the
command can be used again.

4.2. Moderation

Feature key: moderation

4.2.1. Post targets

banLog

target of the message notifying about bans, both via command and via UIl. Will still ban if not
setup.

unBanlLog

target of the message notifying about un-bans, both via command and via UI. Will still ban if not
setup.

kickLog

target of the log message containing information about the kick. Will still kick if not setup.

4.2.2. Commands

Ban a member

» Usage: ban <member> [reason]

» Description: Bans the given member with the given optional reason. This sends a logging
message to the banlLog post target. Banning this way does not delete old messages of the
member on the server. If the reason is not provided, a default reason is used. It is also
possible to ban users via ID, if they are not part of the server anymore.

» Example: ban @Member bad in order to ban Member with the reason bad (the @Member is a user
mention)

* Required bot permission: BAN_MEMBERS

Unban a user

» Usage: unBan <userId>
* Description: Un-bans the given user with the id userId.

* Required bot permission: BAN_MEMBERS

Kick a member

» Usage: kick <member> [reason]

* Description: Kicks the member from the guild with the given reason. If the reason is not
provided, a default reason is used.

» Example: kick @Member bad in order to kick Member with the reason bad (the @Member is a
user mention)

» Required bot permission: KICK_MEMBERS

Change the slow mode in a channel

» Usage: slowmode <duration> [channel]

10

* Description: This command sets the slow mode in the channel to the given duration. This
command uses duration parsing. The channel is optional and if none is provided, the current
channel is used.

« Example: slowMode Th2m3s #general in order to set the slow mode in channel general to 1
hour 2 minutes and 3 seconds (the #general is a user mention)

Purging messages in a channel

» Usage: purge <messageCount> [member]

» Description: Deletes the last messageCount messages in the current channel. If a member is
provided as parameter, only the messages by this member will be deleted. The deletion of
this messages will not be logged by the logging mechanism. The messages to be deleted need
to be from within the last 2 weeks, but there is no limit on how much messages can be

deleted besides that. While the command is ongoing, a status update message will be shown
indicating how far the command is. This message will be deleted after the command is done.

4.3. Warning

This feature can be used to warn specific users if they did something not allowed by the rules.

Feature key: warnings

4.3.1. Post targets

warnlLog

target of the log message containing information about a created warn, only used if feature
mode warnlLogging is enabled.

decaylog

will be used when all the warnings are decayed by decayAllWarnings and feature mode
warnDecaylLogging is enabled.

4.3.2. Feature modes

automaticWarnDecaylLogging

if enabled, warn decays by decayAllWarnings are logged to the post target decaylLog. Enabled by
default.

4.3.3. Commands

Warn a user

» Usage: warn <member> [reason]

* Description: Warns the member with the given reason or a default one, if none is provided. This
command sends a log message to the warnLog post target and notifies the member about the
warn.

« Example: warn @Member bad in order to warn Member with the reason bad (the @Member is a
user mention)

11

Listing the warnings of users

» Usage: warnings [member]

* Description: If no member is provided displays all the warnings on the server. If a member is
provided, will only display the warnings of the user. This uses a paginated output, which
means multiple pages in case there are more warnings to display. This will also display the
date the warning was decayed if applicable.

Showing your warnings
» Usage: myWarnings

* Description: Displays the amount of warnings of the user executing on the server. This will
show both active and total warnings.

Decaying all warnings regardless of the date

» Usage: decayAllWarnings

 Description: This will cause all warnings of this server which are not decayed yet to be
decayed instantly.

Deleting a warning

» Usage: deleteWarning <warnId>

» Description: Deletes the warning identified by warnId completely from the database.

4.4. Automatic warn decay

This feature enables warnings to be decayed after a configurable amount of days. This feature
directly depends on the feature warnings.

Feature key: warnDecay

4.4.1. Relevant system configuration

decayDays The amount of days after which a warning gets decayed. Default: 90

4.4.2. Post targets

decaylog

target of the log message containing the information in case a warning is decayed.

4.4.3. Feature modes

automaticWarnDecaylLogging

if enabled, automatic warn decays are logged to the decaylLog post target. Enabled by default.

4.4.4. Commands

Decaying all warnings if necessary

» Usage: decayWarnings

12

* Description: Triggers the decay of the warnings instantly, which means, every not decayed
warning on this server older than the configured amount of days will be decayed and the
decay will be logged.

4.5. Muting

This feature provides the capability to mute users, which effectively means it applies a role which
prevents them from sending messages and speaking in voice chat. The role used to mute member
will not be created and needs to be provided. There is no validation if the provided role actually
mutes members. If the user leaves the guild and rejoins, the mute role will be re-applied.

Feature key muting

4.5.1. Post targets

mutelog

target of log message containing the information in case a member was muted and when the
mute ended automatically.

4.5.2. Feature modes

mutelLogging
if enabled, each mute is to be logged to the post target muteLog. Enabled by default.

unMutelogging

if enabled, each un mute which happens 'naturally' (after the defined time period is over) will be
logged to the mutelog post target. Enabled by default.

manualUnMutelogging

if enabled, each un mute which happens via the command unmute will be logged to the mutelog
post target. Enabled by default.

4.5.3. Commands

Muting a user
» Usage: mute <member> <duration> [reason]
 Description: Applies the mute role to the given member for the given duration. If reason is not
provided, a default reason will be used for logging in the mutelLog post target. This will
automatically un-mute the user after the duration has passed. If the un-mute happens

automatically, this will also be logged in the mutelLog post target. This command sends a
notification to the user about the mute and kicks the user from the voice channel, if any.

» Example: mute @Member 1h2m3s bad in order to mute the member Member for 1 hour 2 minutes
and 3 seconds with the reason bad (the @Member is a user mention)

Un-Muting a user

» Usage: unMute <member>

13

» Description: Removes the mute role from the given member. This does not log the un-mute.

Configuring which role to use for muting

* Usage: setMuteRole <role>

» Description: Sets the role to be used as the role when applying a mute. This role needs to be
muting, which means, if you want it to be effective, this role needs to deny MESSAGE_WRITE.
Abstracto does not validate nor require the role to actually mute. Only one role can be used
as a mute role.

4.6. Logging

This feature provides a range of utilities to monitor the server. The logging includes:

Feature key logging

4.6.1. Post targets

deletelog

target for the messages containing information about a deleted message.

editLog

target for the messages containing information about an edited message.

joinLog

target for the messages containing information about an user joining the server.

leavelog

target or the messages containing information about an user leaving the server.

Deleted message logging

When a message is deleted, the content of the message and the possible attachments of said
message will be logged.

Edited message logging

When a message is edited, the previous content of the message and the new content of the
message will be logged. This does not work if the message was sent before the bot was started.

Member joining logging

When a member joins the guild, a message indicating this is send.

Member leaving logging

When a member leaves the guild, a message indicating this is send.

4.7. User notes

Feature key userNotes

14

This feature provides the ability to store specific notes for members in the database. These notes
can then be retrieved and deleted and consist of only text.

4.7.1. Commands

Creating a user note

» Usage: userNote <user> <text>

* Description: Creates a single user note for the specified user.

Deleting a user note
* Usage: deleteNote <id>
» Description: Deletes the user note identified by its ID. The ID can be retrieved by the

command userNotes.

Retrieving user notes

» Usage: userNotes [user]

* Description: If user is not provided, this will list the user notes of the whole server, if user is
provided, this will only list user notes from this particular user.

4.8. Invite filter

Feature key inviteFilter

This feature provides the ability to automatically delete invites not allowed on the server. These
illegal invites can be tracked in a specific feature mode, in order to analyze if allowing them would
make sense. Another feature mode can send a notification to a post target in case an invite link has
been deleted.

4.8.1. Post targets

inviteDeletelog

target for notifications about deleted invite links - if the feature mode filterNotifications is
enabled.

4.8.2. Feature modes

trackUses

if enabled, each filtered invite will be tracked in the database. Disabled by default.

filterNotifications

if enabled, sends a notification to the inviteDeletelog post target in case a message was deleted
because of an invite. This notification contains the detected invite link(s), the author and a link
to where the message was. Enabled by default.

15

4.8.3. Commands

Allowing an invite
» Usage: allowInvite <invite>
* Description: Adds the invite to the list of invites, which are allowed on the server. The invite

can either be the full invite URL or only the last part. If the invite is already allowed, this
command will do nothing.

Disallowing an invite
» Usage: disAllowInvite <invite>
» Description: Removes the invite from the list of invites, which are allowed on the server. The

invite can either be the full invite URL or only the last part. In case the given invite is not
allowed, this command will throw an error.

Showing the tracked filtered invites

» Usage: showTrackedInvitelinks [amount]

* Description: Shows the invites which were used and deleted on the server ordered by the
amount of times they were deleted. The amount can be used to define how many invite links
to display. The default is the top 5.

* Mode Restriction: This command is only available when the feature mode trackUses is

enabled.

Remove all or individual invites from the tracked filtered invites

» Usage: removeTrackedInvitelinks [invite]

* Description: Removes the stored statistic for the given invite. In case invite is not given, it
will delete all tracked filtered invites from the server.

* Mode Restriction: This command is only available when the feature mode trackUses is
enabled.

4.9. Profanity filter

Feature key profanityFilter

This functionality provides the ability to automatically delete any detected profanities. These
profanities are configured via the profanity groups and profanity regexes. Every group in these
groups are active and every profanity regex will be evaluated and (depending on the feature mode)
reported to be voted on. The uses of profanities can be tracked and a command is available to show
the profanities for a user.

4.9.1. Post targets

profanityQueue

target for reports to be voted on - if the feature mode filterNotifications is enabled.

16

4.9.2. Feature modes

autoDeleteProfanities

if enabled, each detected profanity will be deleted immediately. Disabled by default.

profanityReport

if enabled, sends a notification to the profanityQueue post target to notify about a detected
profanity. Enabled by default.

profanityVote

if enabled, sends a notification to the profanityQueue post target to notify about a detected
profanity to be voted on. Requires feature mode profanityReport to be enabled. Enabled by
default.

autoDeleteAfterVote

if enabled, after a profanity vote has reached the threshold (system config key profanityVotes),
depending on the outcome, it will be deleted. Requires feature mode profanityVote to be
enabled. Enabled by default.

trackProfanities

if enabled, the command profanities is available to show the profanities of a member. Requires
feature mode profanityVote to be enabled. Enabled by default.

4.9.3. Emotes

» profanityFilterAgreeEmote reaction emote to indicate agreement about a reported profanity

» profanityFilterDisagreeEmote reaction emote to indicate disagreement about a reported
profanity

4.9.4. Commands

Show the profanities of a member
» Usage profanities <member>

» Description: Shows the true and false positive profanities of the given member. Also, if there
any, shows the recent true positive reports.

4.10. Reporting a message via reaction

Feature key reportReactions

This functionality is used to report user by members via adding a reaction to a message. This
message is then send to the post target reactionReports notifying the moderation of the server.
Additional reports of the same wuser, within the cooldown defined by system config
reactionReportCooldownSeconds in seconds, increment the report counter instead of adding another
notification. A reporting user also cannot report another user within a time range defined by the
same system config.

17

4.10.1. Relevant system configuration

reactionReportCooldownSeconds The amount of seconds between the reports to create a new report
for a user. The amount of seconds necessary for a new report of a user to be reported again.
Default: 300

4.10.2. Post targets

reactionReports

target for report notification messages

4.10.3. Emotes

* reactionReport reaction emote to report a message

4.11. Mod mail

This feature enables users to contact the moderation of the server in a private manner. This can be
initiated by messaging the Abstracto bot. The messages, in the channel which is created to contain
the mod mail thread, are not automatically sent to the user, but only when using the commands
reply or anonReply. Any other message is ignored with the intention of enabling discussions within
the channel. In case the message of a message sent to the user needs to be updated or deleted, you
can do simply by editing/deleting the message containing the command.

Feature key: modmail

4.11.1. Necessary bot permissions

MANAGE _CHANNEL to create the channels representing the mod mail threads

4.11.2. Workflow

» User messages the Abstracto bot

« If Abstracto is active in multiple servers with mod mail enabled, the user is prompted to which
server he wants to open a mod mail thread for.

* A channel in the mod mail category is created for the user and notification is sent that a new
mod mail thread has been opened

» User can send messages in the private channel and they get relayed to this created text channel.
* Moderators can answer in the thread with the respective commands
* Moderators close the thread

* The interactions between the user and the moderators gets logged in the mod mail logging
channel

4.11.3. Relevant system configuration

18

modmailCategory

The category on the server which is used to hold the text channels representing the threads

modMailClosingText

The text being used when notifying the user when a thread is closed.

4.11.4. Post targets

modmailPing

Will be used to send the notification when a new thread is opened.

modmaillog

Will be used to log the interactions when a thread is closed.

4.11.5. Feature modes

log

If this is enabled, the messages should be logged into the modmaillog post target when the thread
is closed (by the respective commands). This is required for the command closeNolLog to be
available. Enabled by default.

threadMessage

If this is enabled, every message which is send via the commands reply and anonReply will also
be sent to the thread in order to have a visualizer how the message looks and to have a clear
indication which messages were sent. Enabled by default.

4.11.6. Emotes

* readReaction to indicate to the user that the message sent was processed

4.11.7. Commands
Opening a mod mail thread for a user
» Usage: contact <member>
* Description: Creates a new mod mail thread with the member. Does not send a notification

about the new thread.

Adding a role to the roles responsible for managing mod mail threads

» Usage: setModMailRole <role>

* Description: Adds this role to the roles responsible for mod mail threads, which means: this
role will be pinged when a new thread is created and this role is automatically added to the
roles allowed to execute all commands related to mod mail.

Removing a role from the roles responsible for managing mod mail threads

» Usage: removeModMailRole <role>

» Description: Removes this role from the roles responsible for mod mail threads, which

19

means: this role will no longer be pinged when a new thread is created and this role will also
be removed from the roles allowed to execute all commands related to mod mail.

Changing the category in which the text channels are created
» Usage: setModMailCategory <categoryId>

» Description: Sets the category which Abstracto uses to create the text channels containing the
mod mail threads. The existing threads will not be migrated automatically.

0 The following commands are only available within a mod mail thread.

Replying to a mod mail thread
» Usage reply [text]

» Description: Sends text to the user if provided. text is optional, because its also possible to
only send a picture.

Replying anonymously to a mod mail thread
» Usage: anonReply [text]

» Description: Sends text to the user without showing how is the author. Instead the avatar
and name of Abstracto will be used.

Enabling notifications of messages sent by the user
» Usage: subscribe

* Description: Subscribes you to the current thread, and will ping you when a new message
from the member arrives.

Disabling notifications of messages sent by the user
» Usage: unSubscribe

» Description: Removes your subscription from the current thread, and you will no longer be
notified when a message from the member arrives.

Closing the mod mail thread

» Usage: close [note]

* Description: Closes the thread, deletes the text channel containing the thread and logs the
interactions between the member and the moderators in the modmaillog post target. (only if
modmail_logging is enabled) When closing a thread, a closing header with general
information will be send and the note will be displayed there. When a thread is closed this
way the user is notified of this.

Closing the mod mail thread without notifying the user
» Usage: closeSilently [note]
» Description: Closes the thread, deletes the text channel containing the thread and logs the
interactions between the member and the moderators in the modmaillog post target. (only if

modmail_logging is enabled) When closing a thread, a closing header with general
information will be send and the note will be displayed there.

20

4.12. Experience tracking

This feature contains the ability to track experience of users on the server and award roles based
on the level they reach. The experience is awarded once per minute and is calculated by
“\text{rand}(\text{minExp}, \text{maxExp}) * \text{expScale}'.Only one role is awarded at a time

and the past unlocked roles are not given to the members.

4.12.1. Necessary bot permissions

MANAGE_ROLES in order to award members with roles

4.12.2. Relevant system configuration

minExp The lower bound of the awarded base experience. Default: 10.

maxExp The upper bound of the awarded base experience Default: 25.

expScale The multiplier applied after the experience amount was determined. Default: 1.0.

4.12.3. Commands

Changing the experience scale of the server

» Usage: expScale <value>

* Description: Changes the value of expScale on this server to value.

Showing the leader board of the server

» Usage: leaderboard [page]

» Description: Shows the leader board of the server in a paginated format. This does not use
the interactive pagination. If no parameter is provided, it will show the top 10 members and
their message count, level, experience and rank. Additionally, the same information for the
user executing is shown, regardless whether or not the user is already shown on the given
leader board page. If a page is provided, it will display the leader board of the ranks page * 10
until (page + 1) * 10 instead. If page is beyond the member count, the last members are

shown.

Setting a role to be awarded at a certain level

» Usage: setExpRole <level> <role>

» Description: Sets role to be awarded at the given level. If the role was previously assigned,
this will cause to remove this assignment and recalculate the roles for all users previously
having this role. This command will provide a status message indicating this process. This

will not award this role to users which qualify for this, a syncRoles is necessary for this.

* Example: setExpRole 50 @HighLevel in order to award the role HighLevel at level 50 (the

@HighLevel is a role mention)

Syncing the roles of the members with the configuration

» Usage: syncRoles

21

» Description: Recalculates the appropriate levels for all users on the server and awards the
roles appropriate for the level. There will be a message indicating the current status of the
progress and it is highly advised to not execute this command while another instance is still
processing. This command can run for a longer period of time, depending on the amount of
members in the guild.

Remove a role from being awarded at a certain level

» Usage: unSetExpRole <role>

* Description: Removes this role from the experience tracking, removes the role from all
members previously owning it and recalculates their new role according to the
configuration. This will provide a status update message displaying the process.

Disable experience gain for a certain role

» Usage: disableExpForRole <role>

* Description: Disables any experience gain for members with this role. They will not gain any
experience until the role is removed or it is possible for the role to gain experience again. If a
member has any role of the ones for which experience is disabled, the member will not gain
experience.

Enable experience gain for a certain role

» Usage: enableExpForRole <role>

» Description: Enables experience gain for members with this role again.

List roles for which experience gain is disabled

» Usage: listDisabledExperienceRoles
» Description: Lists the roles for which experience gain is disabled on this server.

» Aliases: 1sDisEpRoles

Disable experience gain for specific member

» Usage: disableExpGain <member>

 Description: Disables the ability to gain experience for this certain member.

Enable experience gain for specific member

» Usage: enableExpGain <member>

* Description: Enables the ability to gain experience for this certain member.

Show the currently configured experience roles in the server

* Usage: levelRoles

* Description: Shows the current configured experience roles, and the level they are awarded
at.

4.13. Assignable roles

This feature enables creating and maintaining so-called 'assignable role places'. These places are
messages at which reactions are added, and when a member reacts, a configured role, is assigned

22

to the user. These places can consist of multiple messages (reactions are limited to 20 per message)
and assignable roles can be added/removed. A place can be disabled, which causes any reaction to
be removed and no role to be assigned. There are several configurations possible for each
individual assignable role place. * inline: tries to display the embed as compact as possible and
when this is disabled, every assignable role is displayed in a separate line. Default: false *
autoRemove: if a member adds a reaction to the assignable role place, they are removed immediately
afterwards. Default: false * unique: if a member adds a reaction and has previously selected other
roles, these previous roles are removed before the new ones are assigned. Default: false * active:
an inactive assignable role place does not assign any roles and immediately removes any reactions
added. Default: true

If there are reactions added by members, which are not used within an assignable role place, the
reaction gets removed automatically.

If the emote is deleted, the assignable role place is still functional, but if you set it up again, it fails
to do so. You need to remove the emote from the assignable role place via its ID. The ID will be
displayed for the emotes which were removed. Deleting the actual role behind an assignable role
causes the assignable role place to become non-functional: the added reaction will remain and
reactions can still be added, but nothing will happen.

Feature key: assignableRole

4.13.1. Commands

Create a new assignable role place

» Usage: createAssignableRolePlace <name> <channel> <text>

* Description: Creates a new assignable role place with the key name. The text will be shown in
the description of the first message. When the place is setup, it will be posted in the channel.
The created place is active and inline by default.

Add a role to an assignable role place

» Usage: addRoleToAssignableRolePlace <name> <emote> <text> <role>

 Description: Adds to the assignable role place identified by name an additional assignable role.
The reaction to be used will be emote and role will be assigned when a member adds the
reaction. It is required that emote is usable by Abstracto and not yet used in the assignable
role place. If the assignable role place is currently setup, the assignable role will be directly
appended to the assignable role place and is immediately available to be used. If this
requires a new post, because the last message already has the maximum amount of
reactions, it is required to setup the assignable role place again.

Create the assignable role place in discord

» Usage: setupAssignableRolePlace <name>

» Description: Posts the messages of the assignable role place identified by name to the
configured channel in discord and adds the reactions. This will delete the old messages
connected to this assignable role place, if there are any.

23

Remove a role from an assignable role place
» Usage: removeRoleFromAssignableRolePlace <name> <emote>
* Description: Removes from the assignable role place identified by name, the emote identified

by emote. If the assignable role place is currently in use, this will update the message and
remove all reactions using emote.

Show the current configuration for an assignable role place
» Usage: showAssignableRolePlaceConfig <name>
 Description: This command displays the current configuration of assignable role place

identified by name. This information includes the available emotes, which roles they
represent and what position they have.

Test how the assignable role place would look like
» Usage: testAssignableRolePlace <name>

» Description: Posts the assignable role place identified by name in the current channel. This
command does not add the reactions, and is purely to check how the messages look.

Move an assignable role place to another channel
» Usage: moveAssignableRolePlace <name> <newChannel>
» Description: Moves the assignable role place identified by name to be in newChannel. This

change takes effect the next time the assignable role place is setup via
setupAssignableRolePlace.

Deactivate the assignable role place
» Usage: deactivateAssignableRolePlace <name>

 Description: Deactivates the assignable role place identified by name. Any further reactions
placed by members will be removed immediately and not assign any roles.

Activate the assignable role place
» Usage: activateAssignableRolePlace <name>

* Description: Activates the assignable role place identified by name and enables the assignment
of roles.

Change configuration of assignable role place
» Usage: changeAssignableRolePlaceConfig <name> <key> <newValue>
* Description: Changes the config attribute indicated by key of the place identified by name to

newValue. The possible keys are: inline, unique, autoRemove and active respectively and all of
these can take true/false as newValue.

Swap two emotes in an assignable role place

» Usage: swapAssignableRolePosition <name> <firstEmote> <secondEmote>

* Description: Swaps the position of the assignable role places firstEmote and secondEmote in
the assignable role place identified by name. This change takes effect the next time the
assignable role place is setup via setupAssignableRolePlace.

24

Set the position of an assignable role within an assignable role place

» Usage: setAssignableRolePosition <name> <emote> <position>

* Description: Sets the position of the emote within the assignable role place identified by name
to position. This change takes effect the next time the assignable role place is setup via
setupAssignableRolePlace.

Delete an assignable role place

» Usage: deleteAssignableRolePlace <name>

* Description: Completely deletes the assignable role place identified by name. This includes any
trace in the database and the current messages, if any.

Change description text of assignable role place

» Usage editAssignableRolePlaceText <name> <newText>

* Description: Changes the text which is shown in the first message of the assignable role place
identified by name to newText. This changes the message immediately.

4.14. Statistic

This component will contain multiple features, currently only emote tracking is available.

4.15. Emote tracking

This feature is about tracking the usage of emotes from the server and external servers. The
intention of this feature is to see what emotes are doing better than others and which emotes might
be interesting to add to the server.

Feature key: emoteTracking

4.15.1. Feature modes

emoteAutoTrack

If this is enabled, emotes which are created within the server, are automatically stored and
tracked. If they are renamed/deleted this will also be reflected automatically. Enabled by default.

externalEmotes

If this is enabled, every external tracked emote will be counted. It is also possible to track
additional external emotes via the trackEmote command. Disabled by default.

autoTrackExternal

If this is enabled, every external emote which is used in a message by a server member will be
automatically stored and tracked. externalEmotes needs to be enabled in order for this to
function properly. Disabled by default.

4.15.2. Commands

25

Creating a newly tracked emote

Usage: trackEmote <emote>

Description: The enoteName needs to be a valid usage of an emote. If this emote is part of the
server, it will now be automatically tracked. If the emote was tracked previously, it will be
enabled again. For external emotes to be tracked this way, the feature mode externalEmotes
needs to be enabled. The emote can either be a valid usage or the ID of an emote (it can only
be an ID if it was previously tracked).

Disable tracking for an emote

Usage: disableEmoteTracking [emote]

Description: This command will cause the usages of emote to not be counted anymore. The
emote can either be a valid usage or the ID of an emote. If emote is not given, the tracking for
all tracked emotes is disabled.

Show currently tracked emotes

Usage: showTrackedEmotes [showTrackingDisabled]

Description: This commands shows the currently tracked emotes of this server. If
“showTrackingDisabled” is true this command will also show the emotes for which the
tracking is currently disabled. The shown tracked emotes are split into six groups:
static/animated emotes from the server, static/animated emotes which previously existed on
the server and static/animated external emotes. The categories for external emotes will not
be shown if externalEmotes is disabled. If there are no emotes of a group, there will be no
message.

Show emote statistics of emotes in the server

Usage: emoteStats [period]

Description: This command shows the amount each tracked emote from the server has been
used overall. If a period is supplied, it will only show the amount of usages in that time
period. If it is not provided, it will show the whole timeline. Beware that the amount of
emotes is only tracked per day. For example, if it is 3PM UTC and you use 18h as a timeperiod,
it will also show the emote statistics for the day before.

Show emote statistics of emotes previously in the server

Usage: deletedEmoteStats [period]

Description: This command behaves the same way as emoteStats with the difference that it
shows the emotes which were previously in the server. This means that the output will only
show the name and the ID of the emote.

Show emote statistics of external emotes

26

Usage: externalEmoteStats [period]

Description: This command behaves the same way as emoteStats with the difference that it
shows emotes which are not from this server. This means that the output will only show the
name and the ID of the emote.

Mode Restriction: This command is only available when the feature mode externalEmotes is
enabled.

Synchronize the server emotes with the database
» Usage: syncTrackedEmotes
* Description: This command cross checks the emotes in the database with the ones currently
available in the server. If an emote was deleted in the server, but is still marked as available
in the database, it will be marked as deleted. If an emote from the server is not available in
the database, it will be created and tracked automatically. A message containing the amount

of emotes deleted and created is shown. If the feature mode emoteAutoTrack is enabled, this
should only be necessary in case the bot had an outage.

Delete emote usages

» Usage: purgeEmoteStats <emote> [period]

* Description: This command removes any stored usages of emote. The emote can either be a
valid usage or the ID of an emote. If period is given, only usages within this time period will
be deleted, if it is not provided, the complete timeline will be deleted.

Deleting an individual tracked emote
» Usage: deleteTrackedEmote <emote>
* Description: Deletes the tracked emote from the database including the usages. The emote can

either be a valid usage or the ID of an emote.

Reset emote statistics

» Usage: resetEmoteStats

 Description: This will delete all emote usages and tracked emotes in the database.

Show the image of external tracked emotes

» Usage: showExternalTrackedEmote <emote>

* Description: Shows the ID, name, link to the image and the image directly for emote in an
embed.

* Mode Restriction: This command is only available when the feature mode externalEmotes is

enabled.

Export the stored emote usages

» Usage: exportEmoteStats [period]

* Description: Creates a CSV file containing the emote usages and attaches it to a message. Each
line in the file is the amount of usages of an emote per day. When an emote has not been
used in a day, no line is present. If period is given, only usages from this time period will be
exported, if it is not provided, the complete timeline will be exported. If the resulting file size
is over the upload limit of the server, this command will not provide the file.

4.16. Reminders

Provides the ability to schedule reminders.

Feature key: remind

27

4.16.1. Commands

Create a reminder

» Usage: remind <duration> <text>

» Description: Creates a reminder with text which will be triggered after duration. This
command uses duration parsing. The reminder will ping when the duration has passed and
provide the context of the reminder.

* Example: remind Th2m3s text in order to be reminded in 1 hour 2 minutes and 3 seconds with

the reason text

Cancelling a reminder
» Usage unRemind <reminderId>
 Description: Cancels this reminder and will cause this reminder to not be executed. Only

possible for reminders started by you.

Listing all active reminders
» Usage: reminders
» Description: Lists all the currently not yet executed reminders and information about each of

them.

Re-schedule a past reminder

» Usage: snooze <reminderId> <duration>

* Description: Schedules the reminder identified by reminderId to be triggered after duration
again. It is only possible to do this for reminders which have already been executed. Only
possible for reminders started by you.

4.17. Starboard

Provides the ability to track note worthy posts in a separate channel, identified by the post target
starboard, because the pins within a channel are limited to 50. This feature works by users reacting
to a message with the appropriate emote. By default this is [, but can be changed via the emote star.
There is a configurable threshold a message needs to reach in order to be posted to starboard. The
post in the starboard is continuously updated and depending on the current star count an
associated emote is displayed. When the poster of the message reacts to the message with a star,
this is not counted. When the post is deleted from the starboard, the original message cannot
appear on the starboard again.

Feature key: starboard

4.17.1. Emotes

* star to vote on posting something to starboard
e star1 for level 1 of starboard
e star2 for level 2 of starboard

» star3 for level 3 of starboard

28

* star4 for level 4 of starboard
» starboardBadgel used as marker for first place in the command starStats

» starboardBadge? used as marker for first place in the command starStats

starboardBadge3 used as marker for first place in the command starStats

4.17.2. Relevant system configuration
starLvl1 The amount of stars necessary to appear on the starboard. Default: 5

starLvl2 The amount of stars necessary in order for the level 2 emote to be used in the starboard
post. Default: 8

starLvl3 The amount of stars necessary in order for the level 3 emote to be used in the starboard
post. Default: 13

starLvl4 The amount of stars necessary in order for the level 4 emote to be used in the starboard
post. Default: 17

4.17.3. Post targets

starboard

The target used for the messages containing the starboard posts with the current star amount

4.17.4. Commands

Showing starboard statistics

» Usage starStats [member]

» Description: Shows the most starred posts, the member with the most received stars and the
members rewarding the most stars. If member is provided, this command will show the top
posts, received stars and given stars for this member. The user is still required to be part of
the server.

4.18. Suggestions

This feature provides the ability for members to post suggestions containing text to the post target
suggestions. These suggestions can then be accepted or denied by the moderators.

Feature key: suggestion

4.18.1. Feature modes

suggestionReminder

If this is enabled, a message will be sent to the post target suggestionReminder, after the amount
of days configured in suggestionReminderDays. Disabled by default.

29

4.18.2. Post targets

suggestions

the target of the messages containing the suggestions

suggestionReminder

the target for the message to remind about suggestions. Requires feature mode
suggestionReminder to be enabled

4.18.3. Emotes

* suggestionYes for up-voting a suggestion

* suggestionNo for down-voting a suggestion

4.18.4. Relevant system configuration

suggestionReminderDays The amount of days in which the reminder, from feature mode
suggestionReminder, should be posted in. Default: 7

4.18.5. Commands

Creating a suggestion
* Usage: suggest <text>
* Description: Posts the text to the suggest post target and places the emotes for up and down

voting. If suggestionReminder is enabled, this will create a suggestion reminder.

Accepting a suggestion

» Usage: accept <suggestionId> [reason]

» Description: Re-posts the suggestion identified by suggestionId and marks the suggestion as
accepted. The optional reason will be used in this re-post, if provided. This will cancel the
suggestion reminder (if it exists)

» Example: accept 1 okay in order to accept the suggestion 1 with the reason okay

Rejecting a suggestion

» Usage: reject <suggestionId> [reason]

» Description: Re-posts the suggestion identified by suggestionId and marks the suggestion as
denied. The optional reason will be used in this re-post, if provided. This will cancel the
suggestion reminder (if it exists)

» Example: deny 1 not okay in order to reject the suggestion 1 with the reason not okay

Removing a suggestion you created

» Usage: unSuggest <suggestionId>

* Description: This will delete the suggestion identified by suggestionId from the channel and
the database, but this is only possible within a specified time range. This will cancel the
suggestion reminder (if it exists)

30

Vetoing a suggestion

» Usage : veto <suggestion> [reason]

* Description: This command will veto the suggestion, this means, it should be indicated that
the suggestion was not rejected by votes, but because it was not acceptable on a fundamental
level. This is basically just a different state of the suggestion. This will cancel the suggestion
reminder (if it exists)

4.19. Miscellaneous

This feature provides some utility commands.

Feature key: utility

4.19.1. Commands

Retrieving the URL of an emote
» Usage: showEmote <emote>
* Description: Posts the name of the emote accompanied with the URL where the image of the

emote is stored.

Displaying the avatar or a member
» Usage: showAvatar [member]
* Description: Displays the avatar of the given member accompanied with a URL to access it

directly. If no member is provided, the member executing will be used.

Displaying information about members
» Usage: userInfo [member]
* Description: Displays information about a member including: username, ID, activity,

nickname (if any), date joined the server and date registered on discord.

Displaying information about the server
» Usage: serverInfo
» Description: Displays information about the server including: ID, server name, owner,

member count, creation date, role count, server features and custom emotes of the server.

Choose one of multiple options

» Usage: choose [options separated by space]

 Description: Selects one of the given options and returns it. The options need to be separated
by space. If you want to have a space in an option, the complete option needs to be wrapped
by ". For example "this is a test" is one whole option.

4.20. Link embeds

31

4.20.1. Emotes

* removeEmbed to remove the embed of a link

This feature enables the automatic embedding of messages containing a message link. If a message
contains a link to a discord message this will create an embed containing the the message content.
This supports image attachments, but not videos or files. A reaction is placed on the embedded
message which can be used to delete this embed. Only the original author and the person creating
the embed can delete the embed this way.

Feature key: 1inkEmbeds

4.21. Repost detection and tracking

This feature can be used to detect whether an image has been posted before on the server. Images
are compared by the hash stored in the database, which makes it very strict. In order to calculate
the hash, the image needs to be downloaded. It is possible to show a leaderboard of the most
reposting users. Both of these features can be changed via feature modes. If a reaction has been
detected a reaction will be added to the post. If a message contains multiple or the detected repost
is not the first image in the message a reaction containing digit indicating the position of the repost
will be added. For example if the repost is the second image in a message, a reaction representing
the digit two will be added.

While it can be configured that the feature is only active in certain channels, the detection whether
an image is a repost checks all previously posted images from the server (given they have been
posted in a channel where the repost check is active).

Feature key: repostDetection

4.21.1. Feature modes

download

If this is enabled, the images in the configured channels will be downloaded and the hash is
calculated basd on the file content. The images are deleted immediately afterwards. If this is
disabled, the proxy URL of the image will be used to calculate the hash. Enabled by default.

leaderboard

If this is enabled, the command repostlLeaderboard will be available. This command shows the
leaderboard of the user with the most reposts. Disabled by default.

4.21.2. Emotes

* repostMarker to indicate that a post has been identified as a repost

4.21.3. Commands

Remove stored image posts and reposts of whole server or specific member

» Usage: purgeImagePosts [member]

32

* Description: If member is provided, this will delete all stored image hashes (and their reposts)
from the database. If member is not provided, this will delete all stored image hashes (and
their reposts) from the whole server.

Remove reposts of whole server or specific member
» Usage: purgeReposts [member]
* Description: If member is provided, this will delete all reposts of the given member. If member is

not provided, this will delete all reposts in the whole server.

Show the leaderboard of reposts

» Usage: repostLeaderboard [page]

* Description: Shows the rank and the amount of reposts for a provided page, if page is not
provided, it will show five users with the highest a mount of reposts. page is 1-indexed. It will
also show the amount and rank of the user executing.

* Mode Restriction: This command is only available when the feature mode leaderboard is

enabled.

Enable repost check for a channel group
» Usage: enableRepostCheck <groupName>
 Description: Enables the repost checking for all channels in the channel group identified by

groupName. This channel group needs to be of type repostCheck.

Disable repost check for a channel group

» Usage: disableRepostCheck <groupName>

* Description: Disables the repost checking for all channels in the channel group identified by
groupName. This channel group needs to be of type repostCheck.

Show the channels for which repost check has been enabled

» Usage: showRepostCheckChannels

 Description: Shows the channel groups with their respective channels for which the repost
check has been enabled. These can only be channel groups of type repostCheck. It can still be
enabled if there are now channels in the channel group.

4.22. Entertainment commands

This feature basically contains a few commands which can be used for entertainment purposes
directly

Feature key: entertainment

4.22.1. Relevant system configuration

rouletteBullets The amount of bullets the revolver for roulette can hold. Default: 6 rollDefaultHigh
The default sides of the die for roll. Default: 6

33

Play a round of russian roulette
» Usage: roulette

* Description: Decides, based on the configured amount of bullets possible, whether a shot
happens. Shows the result as a message.

Calculate the love chance between two texts
» Usage: love(Calc <textA> <xtextB>

* Description: Decides, by a random chance, the percentage of love between the two given
texts and displays it in a message.

Ask a magic 8-ball a question
» Usage: 8ball <text>

» Description: Decides the answer for the question, given on a set of pre-defined answers. This
happens randomly.

Roll a virtual die
» Usage: role [max] [min]
» Description: Rolls a virtual die. Per default this is a six sided die. If max is provided, it changes

the amount of sides possible and if min is provided, no value below this is possible. If min is
larger than max, it is taken as max and vice-versa.

Mock the message of another user

» Usage: mock <text/message>

* Description: Takes the text and prints the text with the characters with alternating upper
and lower case. If no text is provided, this command requires that the command has been
executed in a message which replies to another message. In this case the text to be mocked
will be the content of the message which has been replied to.

Add text as reactions to another message

* Usage: react <message> <text>

* Description: Takes the text, converts it into unicode characters, while trying to avoid
duplicates, and adds the reactions to the given message. If it was not possible to avoid
duplicates, or the overall reactions (including already existing reactions) would go over the
Discord limit, this command will show an error message, without adding any reaction. Some
characters can be replaced with one unicode character, for example 'SOS'.

4.23. Webservices

Integrates different web APIs to be used via the bot.

4.24. Youtube

Feature key: youtube

34

4.24.1. Feature modes

videoDetails

if enabled, the video shown with video details. Disabled by default.

4.24.2. Command

Search for a youtube video

» Usage: youtubeSearch <query>
o Aliases: yt

» Description: Searches youtube for a video with this query, and returns the link with
additional information.

4.25. Urban dictionary

Feature key: urban

4.25.1. Command

Search for an urban dictionary definition

» Usage: urbanDefine <query>
* Aliases: ud

* Description: Searches an urban dictionary definition, and returns the definition, with an
example and meta information.

35

	Abstracto Discord Bot Documentation
	Table of Contents
	1. Description
	2. Glossary
	3. General information
	4. Features
	4.1. Core
	4.1.1. Emotes
	4.1.2. Commands

	4.2. Moderation
	4.2.1. Post targets
	4.2.2. Commands

	4.3. Warning
	4.3.1. Post targets
	4.3.2. Feature modes
	4.3.3. Commands

	4.4. Automatic warn decay
	4.4.1. Relevant system configuration
	4.4.2. Post targets
	4.4.3. Feature modes
	4.4.4. Commands

	4.5. Muting
	4.5.1. Post targets
	4.5.2. Feature modes
	4.5.3. Commands

	4.6. Logging
	4.6.1. Post targets

	4.7. User notes
	4.7.1. Commands

	4.8. Invite filter
	4.8.1. Post targets
	4.8.2. Feature modes
	4.8.3. Commands

	4.9. Profanity filter
	4.9.1. Post targets
	4.9.2. Feature modes
	4.9.3. Emotes
	4.9.4. Commands

	4.10. Reporting a message via reaction
	4.10.1. Relevant system configuration
	4.10.2. Post targets
	4.10.3. Emotes

	4.11. Mod mail
	4.11.1. Necessary bot permissions
	4.11.2. Workflow
	4.11.3. Relevant system configuration
	4.11.4. Post targets
	4.11.5. Feature modes
	4.11.6. Emotes
	4.11.7. Commands

	4.12. Experience tracking
	4.12.1. Necessary bot permissions
	4.12.2. Relevant system configuration
	4.12.3. Commands

	4.13. Assignable roles
	4.13.1. Commands

	4.14. Statistic
	4.15. Emote tracking
	4.15.1. Feature modes
	4.15.2. Commands

	4.16. Reminders
	4.16.1. Commands

	4.17. Starboard
	4.17.1. Emotes
	4.17.2. Relevant system configuration
	4.17.3. Post targets
	4.17.4. Commands

	4.18. Suggestions
	4.18.1. Feature modes
	4.18.2. Post targets
	4.18.3. Emotes
	4.18.4. Relevant system configuration
	4.18.5. Commands

	4.19. Miscellaneous
	4.19.1. Commands

	4.20. Link embeds
	4.20.1. Emotes

	4.21. Repost detection and tracking
	4.21.1. Feature modes
	4.21.2. Emotes
	4.21.3. Commands

	4.22. Entertainment commands
	4.22.1. Relevant system configuration

	4.23. Webservices
	4.24. Youtube
	4.24.1. Feature modes
	4.24.2. Command

	4.25. Urban dictionary
	4.25.1. Command

